

IPSec over
 Ham Radio

Steven Kreuzer
NYC*BSD Users Group

June 2007

Techniques For Tuning FreeBSD To
Keep

Furries, Angry Goths &
Annoying Brazilians at Bay

• The Internet is full of jerks

• Sometimes those jerks will consume
your available Internet-facing
bandwidth, or overpower your CPU, in
an attempt to take you offline

• We call this a Denial of Service attack

• An attempt to make a computer resource
unavailable to its intended users.

• Web servers stop serving web pages

• Email servers stop accepting or delivering e-
mail

• DNS servers stop resolving domain names

• In general, servers stop serving

• The end result is those users keep calling
you until they can get their email

• Obstruct the communication media
between the intended users and the
victim so that they can no longer
communicate adequately.

• Force the victim computer to reset or
consume its resources such that it can
no longer provide its intended service.

• Complete consumption of a resource
such as bandwidth, memory, CPU, file
handles, or any other finite asset.

• Exploiting a weakness in the service to
stop it functioning or causing the
service to crash.

• Sometimes FreeBSD is
your firewall (OMG!)

• Sometimes you don’t
always have the luxury
of a firewall (WTF?)

• The graph on the side
contributes nothing,
but looks impressive
from far away (BBQ?!?) 0

10

20

30

40

50

60

70

80

1st
Qtr

2nd
Qtr

3rd
Qtr

4th
Qtr

OMG
WTF
BBQ

• Understand how a denial of service
attack works.

• Configure a FreeBSD machine to
mitigate the effects of a denial of
service attack.

• Try not to break anything in the
process, and make it as transparent to
the end user as possible.

• Sending a large number of UDP packets
to a target system

• Sending a succession of SYN requests to
a target system.

• Initiated by sending a large number of
UDP packets to random ports

• The server will have to check for the
daemon listening at that port and:

• Determine nothing is listening on that port
• Reply with an ICMP Destination Unreachable

• The system will be forced into sending
many ICMP packets, eventually making
it unreachable.

• Three memory structures are allocated
for TCP connections:

• Socket Structure (socket{})
• IP Control Block Structure (inpcb{})
• TCP Control Block Structure (tcpcb{})

• Every time a client SYN arrives on a
valid port these memory structures
must be allocated.

• Attackers sends a
SYN packet to
server

• Server responds
with a SYN/ACK

• Attacker doesn’t
respond with ACK

• Increase the amount of resources
available for handling connections.

• Limit resources wasted processing
bogus requests.

• Protects against flooding by minimizing the
amount of state kept on the server.

• Holds TCP options from the SYN and enough
state to perform a SYN/ACK retransmission.

• Takes up less space than a TCP control block
structure.

• An incoming ACK for the SYN/ACK that
matches a syncache entry causes the system
to:

• Create a TCP control block with the options
stored in the syncache entry

• Discard the syncache entry

• Replaces per socket linear chain of
incomplete queued connections with a
global hash table.

• Provides an upper boundary in the
amount of memory it takes up.

• Limits the number of entries in a given
hash bucket.

• Hash value is computed on
incoming packet using:

• Source and destination address
• Source and destination port
• Randomly chosen secret

• Result is an index in a hash table

• If a new entry overflows the per-bucket
limit, the oldest entry in the bucket is
dropped.

• If the total number of entries in the hash
table is exceeded, oldest entry is
dropped.

• Memory and CPU required is bounded.

• net.inet.tcp.syncache.cachelimit
• Determines the maximum number of

syncache entries that may be allocated.

• net.inet.tcp.syncache.hashsize
• Controls the size of the hash table.

• net.inet.tcp.syncache.bucketlimit
• Caps the size of each hash chain.

• net.inet.tcp.syncache.rexmtlimit
• Determines how many times a SYN/ACK

should be retransmitted.

• net.inet.tcp.syncache.count
• Indicates how many entries are currently

present in the syncache.

• When a syncache bucket overflows, a
fallback mechanism exists.

• Avoids dropping connections by keeping
initial SYN state in the network.

• Sends a cryptographic value in SYN/ACK
which is returned in the ACK.

• Client sends a SYN packet

• Server responds but discards the SYN
queue entry.

• Server reconstructs queue entry using
information encoded in the sequence
number upon receiving ACK.

• The first sequence number sent by an
endpoint can be any value as decided
by that endpoint.

• Many implementations use zero as the
initial sequence number

• SYN Cookies initial sequence numbers
are carefully constructed according to
defined rules.

• Basis is a table of 32 bit values obtained
from arc4random()

• The source and destination address and
port and a secret are hashed using
md5.

• 25 bits from the result of the hash are
sent back as the cookie.

• Upon receiving an ACK with a valid
cookie from the client will establish a
connection.

• From this point forward, the connection
proceeds as normal.

• If ACK contains an invalid or expired
cookie, the packet is discarded.

• Does not break any protocol
specifications.

• Should be compatible with all TCP
implementations.

• However…

•The server is limited to only 4
predefined MSS values.

•The server must reject all TCP options
because the server discards the SYN
queue entry where that information
would otherwise be stored.

• Amount of time to wait for an ACK in
reply to a SYN/ACK or FIN/ACK

• If an ACK is not received in this time,
the segment can be considered "lost"
and the network connection is freed.

• The FreeBSD TCP/IP stack holds on to
half open connections for 30 seconds.

• This is extremely generous considering
most connections take less than one
second to establish.

• /sbin/sysctl net.inet.tcp.msl=7500

• Control what happens when a packet is
received on a closed port

• Packets arriving on a closed port will be
dropped without notification being sent.

• This saves CPU time and bandwidth.

• /sbin/sysctl net.inet.tcp.blackhole=1
• Drop SYN packets

• /sbin/sysctl net.inet.tcp.blackhole=2
• Drop all TCP packets

• /sbin/sysctl net.inet.udp.blackhole=1
• Drop all UDP packets

• Traditionally, each time the network
card needs attention it generates an
interrupt request.

• The request causes a context switch
and a call to an interrupt handler.

• When the CPU and kernel have to
switch between user and kernel land.

• It i$ an extremely expen$ive operation.
 (see what I did there?)

• Changes the method through which data gets
from your network card to the kernel.

• Provides more control to the operating system
on how and when to handle devices.

• Kernel polls the network card itself at certain
predefined times.

• Kernel decides when it is most efficient to poll
for updates and for how long

• DEC/Intel 21143 and clone 10/100
Ethernet driver; dc(4)

• Intel EtherExpress PRO/100 Ethernet
device driver; fxp(4)

• RealTek 8129/8139 Fast Ethernet device
driver; rl(4)

• SiS 900, SiS 7016 and NS
DP83815/DP83816 Fast Ethernet device
driver; sis(4)

• If your switch or server is set to use
auto-negotiation, every few moments it
stops transferring network traffic in
order to renegotiate its speed.

• Buffers incoming connections until a
complete HTTP request arrives

• The server will not have to context
switch several times before performing
the initial parsing of the request.

• This reduces the amount of required
CPU utilization to handle incoming
requests by keeping active processes in
preforking servers such as Apache

• Read tuning(7). Its quite fascinating!

• Post questions to talk@lists.nycbug.org

• Email me directly:
skreuzer@exit2shell.com

Wasn't That Bad. Right?

