ﬂé’xﬁ

Steven Kre *

NYC*BSD Users Group
June 2007

Angry Goths.&

|

Irriés

B

e

What's The Deal?

* The Internet is full of jerks

Sometimes those jerks will consume
your available Internet-facing
bandwidth, or overpower your CPU, In
an attempt to take you offline

We call this a Denial of Service attack

What's a Denial of Service Attack!

* An attempt to make a computer resource
unavailable to its intended users.
* Web servers stop serving web pages

* Email servers stop accepting or delivering e-
mail

* DNS servers stop resolving domain names

* In general, servers stop serving

* The end result is those users keep calling
you until they can get their emalil

How IS This Accomplished?

* Obstruct the communication media
between the intended users and the
victim so that they can no longer
communicate adequately.

* Force the victim computer to reset or
consume its resources such that it can
no longer provide its intended service.

How IS This Accomplished?

* Complete consumption of a resource
such as bandwidth, memory, CPU, file
handles, or any other finite asset.

* Exploiting a weakness in the service to
stop it functioning or causing the
service to crash.

So? Put a Firewall In
Front of Your Machines

* Sometimes FreeBSD is 80
your firewall (OMG!) 70
60

* Sometimes you don't

always have the luxury =0
of a firewall (WTF?) 40- i\?v“T"f
301
e The graph on the side o] mBES

contributes nothing,
but looks impressive)
from far away (BBQ?!7?) "1st 2nd 3rd 4th

Qtr Qtr Qtr Qtr

10+

What's the Goal Then?

* Understand how a denial of service
attack works.

* Configure a FreeBSD machine to
mitigate the effects of a denial of
service attack.

* Try not to break anything in the
process, and make it as transparent to
the end user as possible.

Common Attack Vectors

* Sending a large number of UDP packets
to a target system

* Sending a succession of SYN requests to
a target system.

What is UDP Flooding?

* Initiated by sending a large number of
UDP packets to random ports

* The server will have to check for the
daemon listening at that port and:

* Determine nothing is listening on that port
* Reply with an ICMP Destination Unreachable

* The system will be forced into sending
many ICMP packets, eventually making
it unreachable.

TCP Connection Estanlishment
L

Behind the Scenes?

* Three memory structures are allocated
for TCP connections:
* Socket Structure (socketq{})
* |P Control Block Structure (inpcb{})
* TCP Control Block Structure (tcpcb{})

* Every time a client SYN arrives on a
valid port these memory structures
must be allocated.

What 5 a SYN Flood?

 Attackers sends a
SYN packet to
server

* Server responds
with a SYN/ACK

* Attacker doesn’t
respond with ACK

L
" =
= >
= 0O
-~
I 4 il

Dealing With Flooding

* Increase the amount of resources
available for handling connections.

* Limit resources wasted processing
bogus requests.

SYN Cache

Protects against flooding by minimizing the
amount of state kept on the server.

Holds TCP options from the SYN and enough
state to perform a SYN/ACK retransmission.

Takes up less space than a TCP control block
structure.

An incoming ACK for the SYN/ACK that
matches a syncache entry causes the system
to:

* Create a TCP control block with the options
stored in the syncache entry

* Discard the syncache entry

How SYN Cache Works

* Replaces per socket linear chain of
iIncomplete queued connections with a
global hash table.

* Provides an upper boundary in the
amount of memory it takes up.

* Limits the number of entries in a given
hash bucket.

How SYN Cache Works

* Hash value is computed on

iIncoming packet using:
* Source and destination address
* Source and destination port
* Randomly chosen secret

e Result is an index In a hash table

How SYN Cache Works

* If a new entry overflows the per-bucket
limit, the oldest entry in the bucket is
dropped.

* |If the total number of entries in the hash
table is exceeded, oldest entry is
dropped.

* Memory and CPU required is bounded.

SYN Cache Tunables

* net.inet.tcp.syncache.cachelimit

* Determines the maximum number of
syncache entries that may be allocated.

* net.inet.tcp.syncache.hashsize
* Controls the size of the hash table.

* net.inet.tcp.syncache.bucketlimit
* Caps the size of each hash chain.

SYN Cache Tunables

* net.inet.tcp.syncache.rexmtlimit

* Determines how many times a SYN/ACK
should be retransmitted.

* net.inet.tcp.syncache.count

* Indicates how many entries are currently
present in the syncache.

SYN Cookies

* When a syncache bucket overflows, a
fallback mechanism exists.

* Avoids dropping connections by keeping
initial SYN state in the network.

* Sends a cryptographic value in SYN/ACK
which is returned in the ACK.

How SYN Cookies Work

* Client sends a SYN packet

* Server responds but discards the SYN
queue entry.

* Server reconstructs queue entry using
Information encoded in the sequence
number upon receiving ACK.

How SYN Cookies Work

* The first sequence number sent by an
endpoint can be any value as decided
by that endpoint.

* Many implementations use zero as the
Initial sequence number

* SYN Cookies initial sequence numbers
are carefully constructed according to
defined rules.

How SYN Cookies Work

e Basis is a table of 32 bit values obtained
from arc4random()

* The source and destination address and
port and a secret are hashed using
md>5.

e 25 bits from the result of the hash are
sent back as the cookie.

How SYN Cookies Work

* Upon receiving an ACK with a valid
cookie from the client will establish a
connection.

* From this point forward, the connection
proceeds as normal.

* If ACK contains an invalid or expired
cookie, the packet is discarded.

SYN Cookie Drawbacks

* Does not break any protocol
specifications.

* Should be compatible with all TCP
Implementations.

* However...

*The server is limited to only 4
predefined MSS values.

* The server must reject all TCP options
because the server discards the SYN
queue entry where that information
would otherwise be stored.

Decrease Maximum Seqment Lie

* Amount of time to wait for an ACK In
reply to a SYN/ACK or FIN/JACK

* If an ACK Is not received In this time,
the segment can be considered "lost"
and the network connection is freed.

Decrease Maximum Seqment Lie

* The FreeBSD TCP/IP stack holds on to
half open connections for 30 seconds.

* This is extremely generous considering
most connections take less than one
second to establish.

e /sbin/sysctl net.inet.tcp.msl=7500

TCP/UDP Blackhole

* Control what happens when a packet is
received on a closed port

* Packets arriving on a closed port will be
dropped without notification being sent.

* This saves CPU time and bandwidth.

Blacknhole Tunables

* /sbin/sysctl net.inet.tcp.blackhole=1
* Drop SYN packets

* /sbin/sysctl net.inet.tcp.blackhole=2
* Drop all TCP packets

* /sbin/sysctl net.inet.udp.blackhole=1
* Drop all UDP packets

Optimizing Device Performance

* Traditionally, each time the network
card needs attention it generates an
Interrupt request.

* The request causes a context switch
and a call to an interrupt handler.

Context Switching

* When the CPU and kernel have to
switch between user and kernel land.

* [t 15 an extremely expen<ive operation.
(see what | did there?)

DEVICE POLLING

* Changes the method through which data gets
from your network card to the kernel.

* Provides more control to the operating system
on how and when to handle devices.

* Kernel polls the network card itself at certain
predefined times.

* Kernel decides when it is most efficient to poll
for updates and for how long

Supported Network Caras

e DEC/Intel 21143 and clone 10/100
Ethernet driver; dc(4)

* Intel EtherExpress PRO/100 Ethernet
device driver; fxp(4)

e RealTek 8129/8139 Fast Ethernet device
driver: rl(4)

e SIS 900, SiS 7016 and NS
DP83815/DP83816 Fast Ethernet device
driver; sis(4)

Disable Auto-Negotiation

* |If your switch or server Is set to use
auto-negotiation, every few moments it
stops transferring network traffic in
order to renegotiate its speed.

ACCEPT FILTER HTTP

* Buffers incoming connections until a
complete HTTP request arrives

* The server will not have to context
switch several times before performing
the initial parsing of the request.

* This reduces the amount of required
CPU utilization to handle incoming
requests by keeping active processes in
preforking servers such as Apache

Where to go From Here

* Read tuning(7). Its quite fascinating!
* Post questions to talk@lists.nycbug.org

* Email me directly:
skreuzer@exit2shell.com

Any; (preapproved) Questions?

FINALLY?
{e's DONE!

Wasn't That Bad. Right?

