Setting Up Working Environment

lvan " Rambius” Ivanov

New York City BSD User Group

Septemer, 2019

rambius (NYC*BUG) Work Env Sep'19 1/45

What Will | Talk About

During the years | have asked for and given advice (mainly asked for), tips
and tricks on how to work efficiently in Unix. The topics include SSH
usage, X Window usage, processing large logs file to ease debugging and

SO on.

rambius (NYC*BUG) Work Env Sep'19 2/45

A desktop and a list of servers to maintain - wiki, bugtracker, build
machines, QA machines. If we are lucky the desktop will have Unix as
well; if not we need a tool like Cygwin or Putty.

rambius (NYC*BUG) Work Env Sep'19 3/45

Poking Around

$ ssh wiki
Two prompts will appear:

The authenticity of host ’wiki’ can’t be established.
ECDSA key fingerprint is SHA256:G+YEolVU...

Are you sure you want to continue connecting (yes/no)?
Password for rambius@wiki:

We don't want to type “yes” and our password constantly.

rambius (NYC*BUG) Work Env Sep'19 4/45

Host Verification Prompt

Wen we type “yes”, the host’s public key is added in /.ssh/known_hosts.
Can we add it in advance? Yes!

rambius (NYC*BUG) Work Env Sep'19 5/45

The command ssh-keyscan shows the SSH server’s public key in format
that can be added to known_hosts

ssh-keyscan -t rsa wiki
ssh-keyscan -t rsa wiki >> ~/.ssh/known_hosts

-t specifies the key's type - rsa, dsa, etc.

rambius (NYC*BUG) Work Env Sep'19 6/45

Avoiding duplicates in known_hosts

If we run the second ssh-keyscan command more than one time
inadvertantly we will get duplicate entries in known_host. Not that it
hurts but the command ssh-keygen can tell if a host key has been
already added:

ssh-keygen -F wiki

returns 1 if the host is not added; dumps it otherwise

rambius (NYC*BUG) Work Env Sep'19 7/45

ssh-keygen and ssh-keyscan

Putting it all together:

host=wiki
if ! ssh-keygen -F $host
then
ssh-keyscan -t rsa $host >> $known_hosts
fi

rambius (NYC*BUG) Work Env Sep'19 8/45

Host Verification Prompt - Conclusion (For Now)

We can loop over the list of hosts and use the snippet above we can
prepopulate known_hosts. Still that does not guard us from MITM. We
will discuss a better solution later.

rambius (NYC*BUG) Work Env Sep'19 9/45

Password Prompt

Passwords suck in general. They can expire, be forgotten, stolen or
mistyped and are hard to automate. SSH keys are better - although they
are more secure, they are also more convenient.

rambius (NYC*BUG) Work Env Sep'19 10 /45

Generating SSH Keys

To generate a key pair on the local machine run
ssh-keygen
To prevent it from overwriting existing keys use

ssh-keygen -f <output_file>

rambius (NYC*BUG) Work Env Sep'19 11/45

Explaining ssh-keygen

By default the public key goes to /.ssh/id_<type>.pub, the private key
to /.ssh/id_<type>.

The private key authenticates the user to the system, so it must be kept
secret.

ssh-keygen prompt for a passphrase to encrypt the private key with with to
increase its protection. | always put passphrases on my keys.

rambius (NYC*BUG) Work Env Sep'19 12 /45

Authorizing a Key

The remote side must authorize the key before we can authenticate with
it. The authorization consists of adding the public key to

/ .ssh/authorized keys. We need to distribute the public key to that
remote file.

rambius (NYC*BUG) Work Env Sep'19 13 /45

Distributing the Public Key

There are several ways to add the public key to authorized keys:
@ Copying the key to the remote box:
scp 7/.ssh/id_rsa.pub wiki:~/
ssh wiki "cat id_rsa.pub >> ~/.ssh/authorized_keys"
@ Using SSH stdin and stdout

cat “/.ssh/id_rsa.pub | ssh wiki \
"cat - >> “/.ssh/authorized_keys"

@ Using ssh-copy-id
ssh-copy-id -i ~/.ssh/id_rsa.pub wiki

rambius (NYC*BUG) Work Env Sep'19 14 /45

ssh-copy-id

| prefer ssh-copy-id, because it checks if the key is already in
authorized keys. ssh-copy-id prompts for the password and usually
this is the only time | have to type my password.

rambius (NYC*BUG) Work Env Sep'19 15 /45

Distributing the Public Key En Mass

If we use ssh-copy-id for multiple hosts, we will be prompted multiple
times for the password. If the user authenticates with a same password
everywhere (the case of Active Directory or LDAP user stores) we can be
prompted once and use the password for all hosts.

| have implemented that scenatio using TCL / Expect. Expect is excellent
for automating interactive programs.

rambius (NYC*BUG) Work Env Sep'19 16 / 45

Expect - Password Prompt

The following Expect procedure reads the password

proc promptpass {{msg "Password: "}} {
stty -echo
send_user -- $msg
expect_user -re "(.*)\\n"
send_user "\\n"
stty echo
return $expect_out(l,string)

3

It disables characters echoing, prints a prompt, captures the password and
enables echoing again.

rambius (NYC*BUG) Work Env Sep'19 17 /45

Expect - The Main Procedure 1

The main procedure takes a file with one host per line and calls
ssh-copy-id on each host:

set pass [promptpass]
set hf [lindex $argv 0]
set hh [open $hf]
set timeout 60
set pubkey "$env(HOME)/.ssh/id_rsa.pub"
while {[gets $hh host] >= 0} {
spawn ssh-copy-id -i $pubkey $host

expect {
"x7assword*" { send "$pass\n" }
}
}
close $hh

rambius (NYC*BUG) Work Env Sep'19 18 /45

Expect - The Main Procedure 2

spawn runs ssh-copy-id. expect waits until ssh-copy-id outputs
“Password:" or “password:" and then sends the password.

| needed to increase spawn's timeout, because some of my hosts were
slower.

Another tool called sshpass can also supply the password to
ssh-copy-id. | used expect because it was preinstalled.

rambius (NYC*BUG) Work Env Sep'19 19 /45

Where All This Comes Handy

Once | screwed up my window manager’s configuration and decided to run
rm -rf * in its configuration directory. It turned out | ranitin /.ssh. |
was so happy | could easily restore all SSH setup.

rambius (NYC*BUG) Work Env Sep'19 20 /45

SSH Passphrases

At this point we handled host verication and key authentication. If we
login we will get a prompt about the private key's passphrase:

$ ssh wiki
Enter passphrase for key ’/home/.../id_rsa’:

The passphrase is used to decrypt the private key. Upon entering it the
key is “unlocked” and we can log in.

rambius (NYC*BUG) Work Env Sep'19 21 /45

Passphrases vs Passwords

The main difference between passwords and passphrases is that the
password travels to the remote side; the passphrase never leaves the local
machine. In fact, using SSH keys no private information travels to the
remote side.

The passwords cannot be “preloaded”. The encrypted key can be unlocked
in advance using SSH agents.

rambius (NYC*BUG) Work Env Sep'19 22 /45

SSH Agents and Passphrases

ssh-agent is an authentication agent that holds the private key for key
authentication. When started, it holds no key. ssh-add prompts for the
passwphrase, unlocks the key and adds it to a running SSH agent.

rambius (NYC*BUG) Work Env Sep'19 23 /45

SSH Agent - A Typical Usage

$ eval ‘ssh-agent®

$ ssh-add

Enter passphrase for /home/.../id_rsa

Identity added: /home/.../id_rsa (/home/.../id_rsa)
$ ssh wiki

wiki$:

At that point of time we can ssh with no prompts from the current
terminal.

rambius (NYC*BUG) Work Env Sep'19 24 /45

Reusing a SSH agent 1

The SSH agent communicates with ssh-add and ssh by setting
SSH_AGENT_PID and SSH_AUTH_SOCK environment variables. If those
variable are not set, for example when we start a new terminal (not from
the current one), ssh-add and ssh cannot find the ssh agent even if it is
running.

rambius (NYC*BUG) Work Env Sep'19 25 /45

Reusing a SSH agent 2

| have tried sharing ssh agent’s variables by
ssh-agent > ~/.ssh/agent

and in then sourcing /.ssh/agent in .profile, but that does not work if
ssh-agent is not running at all. We could examine ps if it is running and
then start it, but that got complicated (even more with X Window) and |
never made it work reliably.

rambius (NYC*BUG) Work Env Sep'19 26 /45

Keychain to reuse ssh-agent

keychain allows the re-use of a single ssh-agent between terminals, shell
and X Window sessions and cron jobs. The usage is simple:

$ keychain ~/.ssh/id_rsa
Supply the passphrase
$. 7/.keychain/‘hostname‘-sh

We source /.keychain/‘hostname‘-sh from .profile and we will
have an ssh-agent available.

rambius (NYC*BUG) Work Env Sep'19 27 /45

ssh-agent and ssh-copy-id

| recently discovered that if a key is loaded into an SSH agent,
ssh-copy-id fetch it from the agent and copy it to a host.

eval ‘ssh-agent®
ssh-add ~/.ssh/id_rsa
or

keychain ~/.ssh/id_rsa

ssh-copy-id <host>

that is there is no need to supply -i option to ssh-copy-id.

rambius (NYC*BUG) Work Env Sep'19 28 /45

Most of the boxes | work with have many X clients installed on them. |

find it convenient to run xterm, emacs, etc remotely.
The X Window terminology is a little bit reverse. The server is the display
where the application are drawn, often the local desktop. The X clients

run on the remote machines.

rambius (NYC*BUG) Work Env Sep'19 29 /45

X Window - The Server

startx starts the X Server on the local machine. /.xinitrc contains
additional initialization such as what clients should be run (at least one
xterm) or what window manager.

rambius (NYC*BUG) Work Env Sep'19 30/ 45

X Window - The Clients

The X client connect to the X server over the network using (insecure)
connection. The DISPLAY variable (on the X client's box) contains the
location of the X server.

The commands xhost and xauth provide ways to authenticate X clients

to the X server.

rambius (NYC*BUG) Work Env Sep'19 31/45

X Forwarding

An X protocol connection can be forwarded through an SSH connection to
provide more security and stronger authentication.

When using SSH with X11 forwarding sshd runs auth on user's behalf to
add it to .Xauthority. ssh also sets the DISPLAY variable.

rambius (NYC*BUG) Work Env Sep'19 32/45

Running X Client Remotely

From an xterm (or another terminal emulator) running on the loca
machine (the X server) we connect to the box with the X client over ssh
with trusted X11 forwarding:

$ ssh -Y xclientbox
xclientbox$ xterm &
xclientbox$ emacs &

xterm and emacs appear in the X server on our desktop.

rambius (NYC*BUG) Work Env Sep'19 33 /45

X Server and keychain

To make sure the ssh command above and all other ssh invokations have
an SSH agent we can provide one in .xinitrc:

sshkey=$HOME/ .ssh/id_rsa
if ! ssh-add -1 2>&1 | grep -q $sshkey

then

keychain --timeout 600 $sshkey
fi
if [-f $HOME/.keychain/‘hostname‘-sh]
then

source $HOME/.keychain/‘hostname‘-sh
fi

openbox-session & wmpid=$!
wait $wmpid

rambius (NYC*BUG) Work Env Sep'19 34 /45

X Server and keychain - Explanations

ssh-add -1 lists the keys loaded in the SSH agent. If the key is not
added or an SSH agent is not running, we run keychain, source its file
and run the window manager.

rambius (NYC*BUG) Work Env Sep'19 35 /45

For no particular reason | am using Openbox with fbpanel. | access two
servers most frequently so | have added shortcuts to them in fbpanel. The

shortcut calls

xterm -hold -e /bin/sh -c "ssh <host>"

rambius (NYC*BUG) Work Env Sep'19 36 /45

Host Verification Revisited

The only place where SSH needs human intervention is when it makes the
very first initial connection to a host. It cannot possible decide if the public
key presented by the remote host really belongs to it or it is a MITM.

rambius (NYC*BUG) Work Env Sep'19 37 /45

Funny Story with a Support Person

| had a chat with a support person from a web hosting company. He told
me to ssh to a host. | prompty did so and | was greeted by the message
with to approve or reject the host’s fingerprint. | had time to waste so |
asked the person to supply the fingerprint so that | could compare it. |
waited 20 mins and he was still could not send it...

rambius (NYC*BUG) Work Env Sep'19 38 /45

Host Verification Bad Practices

| have seen people fighting host verification out of confusion or lack of
knowledge. Usually they set StrictHostKeyCheckng=no or
UserKnownHostFile=/dev/null.

rambius (NYC*BUG) Work Env Sep'19 39 /45

The Solution - SSHFP

The solution is to move host verification out of the users. SSHFP allows
storing SSH fingerprint in a DNS server. After DNSSEC is used to sign
zone we get assurance that the fingerprints are genuine.

Thus the people who usually provision the boxes can also add their
fingerprints to the DNS infrastructure.

rambius (NYC*BUG) Work Env Sep'19 40 /45

A Case Study with OpenBSD and Unbound

| have a spare APU board, where | setup OpenBSD and Unbound to set

SSHFP.
DISCLAIMER: | am no expert in DNS, so take the following slides with a

grain of salt.

rambius (NYC*BUG) Work Env Sep'19 41/45

Unbound Setup 1

The first step is to establish the initial key to sign the zone.
unbound-anchor command creates the initial root.key.
unbound-anchor should also run on startup to update that file.
unbound . conf should have the location of that file as well:

server:

auto-trust-anchor-file: "/var/unbound/db/root.key"

rambius (NYC*BUG) Work Env Sep'19 42 /45

Unbound Setup 2

Once the zone is signed SSHFP fields for the host should be added.
ssh-keygen -r <host> can print them:

$ ssh-keygen -r <host>

denica IN SSHFP 1 1 e2cf36c947...
denica IN SSHFP 1 2 4140de402c...
denica IN SSHFP 2 1 9df77afeec...
denica IN SSHFP 2 2 311d5bedff...
denica IN SSHFP 3 1 d1924f8977...
denica IN SSHFP 3 2 1be604a355...
denica IN SSHFP 4 1 0Ofel724bab...
denica IN SSHFP 4 2 d0bdf938f7...

rambius (NYC*BUG) Work Env Sep'19 43 /45

Unbound Setup 3

Copy the fields to unbound. conf

server:

local-zone: "zone." static

local-data: <host>.zone. IN A 192.168.1.2
local-data: "apu.supernova IN SSHFP 1 2 ..."
local-data: "apu.supernova IN SSHFP 2 2 ..."
local-data: "apu.supernova IN SSHFP 3 2 ..."
local-data: "apu.supernova IN SSHFP 4 2 ..."

Restart unbound

rambius (NYC*BUG) Work Env Sep'19 44 /45

SSH Client Verifying the Fingerprints from DNS

Run ssh with VerifyHostKeyDNS=yes
ssh -o VerifyHostKeyDNS=yes <host>

It should verify the host against the DNS and will not prompt even if the
host’s key is not in known_hosts.

rambius (NYC*BUG) Work Env Sep'19 45 /45

